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Abstract. We present numerical results for the low-lying spectra of quantum dots\vith3 to

8 as a function of the external magnetic field. The only values that the angular momentum of the
ground state can take are magic values. This is interpreted in terms of a geometrical configuration
model and arf-configuration model. The relationship of the two models is discussed.

1. Introduction

With the use of modern lithographic techniques and through a series of masking and etching
steps, itis now possible to create a single quantum dot contaM{id = 1, 2, 3, .. .) electrons

[1-9]. The resulting dot has typically a disc-like shape with a lateral confinement potential
that to a good approximation is parabolic. In such quantum dots the gate potential and thus
the number of electrons can be controlled at will. Single-electron capacitance spectroscopy
allows indirect measurement of the energy levels of a single dot [7, 9].

Theoretical considerations of systems of few electrons in two space dimensions and a
perpendicular magnetic field can be traced back to the early 1980s. The three-electron system
with parabolicpressurewas first considered by Laughlin in the context of the fractional
quantum Hall effect [10]; this essentially laid the groundwork for studies on quantum dots.
Laughlin explicitly constructed the spin-polarized correlated states in the lowest Landau level
and showed that they approximate the exact eigenstates well. The ground state turned out to
be incompressible over a range of applied pressure becausmaglgvalues of the angular
momentumL = 3k (k = 1,2, 3, ...) minimize the interaction energy. Similar analysis was
later carried out by Girvin and Jach [11], and ledial up to N = 7 [12]; the magic humbers
were found to exist for systems with more particles.

The role of electron—electron interactions, and the effects of confinement and external
magnetic field on few-electron quantum dots have been studied by Maksym and Chakraborty
for N = 3,4[13], and Yanget alfor N = 5, 6 [14]. Using a direct numerical diagonalization
technique, they calculated the energy spectra of the dots in the polarized and unpolarized
states, and pointed out the competition of the kinetic and interaction energies. As a result of
this competition, the angular momentum of the ground state of a few-electron system changes
with increasing magnetic field through a series of magic numbers. This predicted transition has
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recently been confirmed in experiments M= 2, 3 [15]. The existence of magic numbers is
also predicted to cause oscillations in physical properties such as the electronic specific heat
[13], magnetization [16], and magnetoluminescence [17], and to affect the transport [18], and
the chemical potential [19].

As for the origin of the magic numbers, several theoretical explanations have been
proposed. In the composite-fermion model [20, 21], J&iml constructed a trial ground-
state wavefunction in the following form:

WGz 22 i) = P [ i — 2% o (1)

i>j

whereL = L* +kN(N — 1), and P, projects the wavefunction onto the lowest Landau level
(see below);L* is subject to the conditior-rN(N — 1)/2 < L* < N(N — 1)/2; &, is
the wavefunction of non-interacting electrons with total angular momeiitunThey argued
that all possible magic numbers must identify such stétgswhere the electrons compactly
fill each Landau level from the lowest possible angular momentum. The composite-fermion
model captures most of the physics since the wavefunction given by equation (1) normally
has an overlap close to unity with the true state. However, it turns out that the compact
filling is neither a necessary condition, since it rejects some important magic numbers, nor a
sufficient condition, since not all compact fillings give a particularly low interaction energy
[22]. Thus with the composite-fermion model one does not know whishould be a magic
number beforehand. Recently, on the basis of the concept of sub-Landau-level structures, a
pocket calculatomodel was proposed by Dharma-wardana for predicting the magic numbers
and the ground-state energy [23]. Unfortunately, Dharma-wardana’s model was only partly
successful [24].

The pair-correlation functions of groups of few electrons have been analysed in some detail
by Maksym [25, 26]. Using the Eckart-frame approach, Maksym found that atiatige dot
has molecule-like electronic structures when there is only one equilibrium configuration, and
has liquid-like structures when there is more than one equilibrium configuration. In some recent
studies [27, 28], we have argued that the origin of the magic numbers must be the symmetry
constraints on the geometrical configuration (this is known as the geometrical configuration
model; it deals with the magic numbers in the polarized and unpolarized states in a unified
manner); we made a detailed calculation for the three-electron and four-electron dots in the
Wigner-crystal regime, and found that the model predicted the magic numbers well.

The main objective of this paper is to further clarify the origin of the magic numbers.
In the following section the quantum dot model and the numerical method are described.
Extensive numerical results for the low-lying spectra for systems of few electrons are presented
in section 3. In section 4, the basic idea of the geometrical model is recalled and the model
is reformulated in a more general fashion. In addition to the geometrical model, a model in
the space of single-particle angular momentum, called-t@nfiguration model, is proposed
which seems to work better than the geometrical model at shallts equivalence to the
geometrical configuration model is revealed.

2. Formalism

Let us consider the motion of a single electron in a parabolic poter%ﬁmfwgrz, in the
X-Y plane with a uniform magnetic fiel® applied in the—Z-direction; the single-particle
Hamiltonian is

h = hspace"‘ hspin (2)
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1 1
hspacez %(1) + eA)Z + ZM*wSrz (3)

hspin = —g*lLBsz 4)

wherem* is the effective electron mass; is a strength parameter for the confinement potential,
g* is the effective Land factor,u 3 is the Bohr magneton, arid is the spin operator in the
Z-direction. With a symmetric gaugdy, = B x r/2, equation (3) can be rewritten as

p* 1 22 @es

hspacez 2 + 2m wr — EE (5)

whereow = ,/wi + ®?2/4, w. = eB/m* is the cyclotron frequency, anfdiis the angular mom-
entum operator in th&-direction. The eigenstates bfpaccare given by

Ikl) = Nuz' L}'[|z[?/(2a%)] exp[—|z|?/ (4a?)] (6)

where

Nu = vk /[20¥7 (k + [1])1a211+D]

is the normalization constant,—= x +iy is the imaginary displacement from the origlri’,‘ (x)
is a Laguerre polynomial, ant® = 71/(20om*). The associated eigenenergy is

_ 1_
e = hof2k + ] + 1] — S lho. @)

With wg = 0, equation (7) reduces tg, = [k + %(|l| -+ %]ﬁwc. Theney, depends on the
quantum number = k + (|| — [)/2 solely, wheren defines the Landau-level index, ahd
is the quantum number of the angular momentum. For the lowest Landau leveh wit@
(i.,e.k = 0 and! > 0), the eigenstate of equation (6) can be more succinctly written as

/ 1
1) = Wzl eXp[—|z|2/(4a2)]. (®)

This can be qualitatively described as the circular motion of an electron about the origin with
angular momenturfi and a root mean square orbit radid§/ + 1)a, since

{121y = (I + Da®. )

We now consider the motion oV particles interacting via the unscreened Coulomb
potential; the Hamiltonian is

x 2.2 We » * R
H = Z[Zm* + m o] } *V@22. ) - 5 L—g'upBS. (10)
with

N 2

V(z1,22,...,2n8) = Z — (12)

= Ameoer|zi — zjl

. N R . N
= Zzl SZ = Z.’Y\Zl‘ (12)
i= i=1

whereV is the total interaction potential, is the total angular momentum operator, @hds
the Z-component of the total spin.
To solve the eigenequation

HY = EW (13)
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we expand the trial wavefunction in terms of Slater determinants composed of single-particle
states:

U= Zai|i> (14)

wherei denotes a set of quantum numbers{l;s,1, kolos;2, . . ., kylys,y] for brevity. We
drop thek-indices for a state with all particles in the lowest Landau level. We further drop the
spin indexs, for fully polarized states in the following.

When one diagonalizes equation (13), it is worth noticing the following facts:

(a) Since the particle—particle interaction conserves the total angular momehtahguld
be a common eigenstate of operatp#s L, 52, S.}.

(b) The particle—particle interaction modifies the relative mode only; it does not affect the
centre-of-mass (CM) mode. If we introduce a CM coordingtgand N — 1 Jacobian
relative coordinate§y, 12, ..., ny_1} given by

1
Zem= —(z1t+tz2+ - +2zn)

N
1
N =,/ E(ZZ —z1)

2
N2 = \/;[13 —(z1+22)/2] (15)

nj = [zj+1— (1t z2+---+25)/j]

S
j+1

then the operator&# and L will split into two independent parts:
H = Hrel + Hcm

AL (16)
L = Lye| + Lem

where{Hem, Lem} describe the CM mode, andirel, Lrei} describe the relative mode.
The CM motion is equivalent to that of a fictitious particle with particle msss* and
chargeNe. HenceH.n, is identical to equation (5), the smallest eigenvalue of which is
E.m = hw occurring atL., = 0 in the lowest Landau level. We further require tiradlso

be an eigenstate di.,. To guarantee that the lowest state obtained from the numerical
diagonalization is the ground state of the CM motion and has the expected total spin, we
add an operato€(Hem — hw) + Co(82 — S(S + DR?) to H, whereC; andC; are two
sufficiently large positive numbers, afds the expected value of the total spin quantum
number.

(c) To obtain quantitatively very accurate spectra, it is necessary to include basis states of
several higher Landau levels in the diagonalization, especially in theBldigld regime.
However, we find that the inclusion of higher Landau levels in the basis space does not
change the qualitative features (i.e., the magic numbers). Thus itis justified to assume that
all electrons are in the lowest Landau level in order to understand the underlying physics
well. Within the lowest Landau level, the lowest eigenenergy of a given &taté., S)
can be written as

E(N,L,S) = L(w— w./2) + Nhw — g*upg BRS + (Wis|V (21, 22, - . ., 2v)|Wig)  (17)
whereS, = S has been assumed, ad, is the lowest eigenstate of a stafé, L, S).
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We further introduce a set of hyperspherical coordinates in the following manner:

N1 = p coSary) €
n2 = p Sin(ay) COYar2)€¥?

(18)
Nv—2 = p Sin(ay) SiNet) - - - SiN(aty —3) COSary—2) €972
nn—1 = p Sin(ery) SiN(ar2) - - - SiN(ary —3) SiN(ory —) €9V
wherey; is the polar angle of;;. Physically, the hyper-radius

p = (mPP+Inl?+- - +npy_1/HY?

measures the size; the angular variables {«y, ..., ay_2; ¢1, ..., ox_1} Measure the shape
and the orientation of the system. The wavefunctionNgparticles all in the lowest Landau
level separates into

Wis = RL(p)Y[5(Q) (19)
where
2
Ri(p) = L exp[-p?/(4a?)]. 20
L(p) \/(ZaZ)L+N—1(L+N—2)!p Xpl—p°/(4a”)] (20)
The total Coulomb interaction energy function can be rewritten as
e UK
V(z1,22,...,2N) = 2 L (21)
TEoE, P

We also observe that
—2y— 1]

(R, %|RL> - [zszNf:L o= 12])'!' \/g (22)
which decreases monotonically with the increasé ahd tends to the limit 4,/2(L + N)a2.
The average Coulomb energy in the lowest eigenstate can then be expressed as

2 [2(L+N—2)—1]!
V2repe,a 2EN(L+ N —2)!

(WiIV (21, 22, - . - ZN) | Whg) = AN, L, S) (23)

wherei(N, L, S) is defined by
AN, L, S) = (YU (Q)|Y}) (24)

which is a function of¥, L, andS, and is independent of the dynamical parameteisB,
andwy, etc.

3. Numerical results

Our calculations have been performed for systems containing 3 to 8 electrong.F&and
4, all possible spin configurations have been covered. NFot 5, only the fully polarized
states have been considered for brevity. In all cases, the results are for quantum dots created
in GaAs (i.e.n* = 0.067m,, g* = 0.044,¢, = 13.1) with wy = 3.6 meV [8].
In figure 1, the calculated is presented as a function bf separately for differen¥ and
S. This quantity is the average interaction energy when the hyper-radaifixed to unity.
Thus itis independent of the size of the system and provides us with information about particle
correlation on thep = 1 hypersphere. Globally speaking, edchn figure 1 decreases with
the increase ol and tends to the classical value of the interaction energy in the equilibrium
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Figure 1. A, defined in equation (24), is presented as a functioh,afeparately for differentv

andS. Only theS = N/2 states are presented f9r= 5 to 8. The black dots denote the states

that can become the lowest one in a magnetic field. The hollow dots denote the states that never
become the lowest one. There are no states with N(N — 1)/2,andL = 1+ N(N — 1)/2 at
S=N/2.

configuration. This is understandable since a quantum system will coincide with its classical
counterpart in the limit of large quantum numbers. However, an outstanding feature is that
the A-curves do not vary smoothly but show many downward cusps, implying that at some
special (magic) values df the system has a particularly low interaction energy compared to
the cases for othdt-values. This results in fluctuation mfwith L. The fluctuation amplitude
decreases with the increaselofind is expected to disappear in the classical limit.

To be more precise, fav = 3, 4, 5in the fully polarized states s particularly low when

L=Nk+N(N—1)/2 *k=0,1,2,...). (25)

(These values are shown as black dots in figure 1.) For the unpolarized states, the rules are
more trivial: particularly lowA occurs atl. # 3k for N = 3 andS = 1/2 (see figure X)), at
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L # 4k +2for N = 4 andS = 1 (see figure X)), and atL. = 2k for N = 4 andS = 0 (see

figure 1¢)).

The simple rule of equation (25) is valid fof = 6, 7, 8 only withk = 0, 1. For larger
L, the downward cusps occur at

L=(N—Dk+N(N —1)/2 (26)

for the fully polarized states.
Besides those mentioned above, there are some other minor downward cusps detectable

from figure 1 for the polarized states. These ark at 12 forN = 4; L = 13, 22 forN = 5;
L =27,33forN =6;andL = 36forN =7.

E(3)-3E(1)(meV)

>
Q
£
—~~
]
jea]
[op]
!
2
j<3]
4 6 8 10 12 14 0 2 4 6 8 10 12 14
B(Tesla) B(Tesla)
16.8
5 16.6 |
164
— 1
B 16.2 |
o3
]
- 16.0 }
A d
=
15.8 |
15.6

0 2 4 6 B 10 12 14
B(Tesla)

Figure 2. In (a) and(b), the lowest eigenenergy of a stdfe, S) is presented as a function &f

for N = 3. E(3) is the many-particle eigenenergy defined in equation (17) ) = hw is the
single-particle energy; the spin terrg* g BS is not included. Numbers in the figures indicate
the angular momenta of the states. Iiic), the lowest energies in different spin configurations are
presented together for comparison; here the spin tegifiu s BS has been included; arrows point
to the positions where ah-transition and/or as-transition take place in the ground state.

Since experimentally a quantum dot is studied by applying a magnetic field in the
perpendicular direction, the evolution of eigenenergies in a magnetic field is important to
experimentalists. To see where the lowest eigenstate occurs in a magnetic field, we drew
eachE(N, L, S) (defined in equation (17)) for a given stat¥, L, S) as a function of the
external magnetic field in figures 2 and 3 f§r= 3 and 4 respectively; from these figures
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Figure 3. As figure 2, but forN = 4.

we see that with the increase Bfthe lowest state occurs at higher and higherTherefore
there is an_-transition in quantum dots in a varying magnetic field. This can be qualitatively
understood as follows: the orbit radius for the circular motion of an electron in a quantum dot
is proportional td anda (see equation (9)); the latter decreases with the increaBe ©hus
electrons will jump to orbits with highedrto avoid the increase of the repulsive interaction
energy when the magnetic field strength is increased. We find thét thken to be a constant
or a monotonically decreasing function bf then each state df can become the lowest and
the L-transition takes place continuously; whenakes the true values as shown in figures
2 and 3, only some of thés can become the lowest state and the others never become the
lowest state no matter what values are taken by the dynamical parameters. This suggests the
existence of certain selection rules governingthansition in a magnetic field.

For N = 3 in the states witt§ = 3/2 (see figure 2()), the lowest state runs over the
well-knownL = 3k (k = 1, 2, 3,...) sequence; in the states with= 1/2 (see figure Z(),
it is the L # 3k sequence that can become the lowest state of that spin configuration. For
N = 4, the possible lowest states have= 4k +2 (k = 1,2, 3, ...) for § = 2 (see figure 3);
L # 4k +2forS =1, andL = 2k for § = 0. Comparing figures 2 and 3 with figure 1,
one immediately recognizes that the lowest state occurs just at those valueghgfre the
corresponding.-values are particularly low. Hence we are confident that the selection rules
originate from the fluctuating structure bf
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Figure 4. As figure 2, but forN = 5 to 8. Only the fully polarized states are presented. The solid
curves are for states with= Nk+ N(N —1)/2 (k =0, 1, 2, ... .); the long-dashed curves are for
states withL. = (N — 1)k + N(N — 1)/2; the dotted curves are for the others.

It should be noted that every possible lowest state detected in figune2@(), 4(a), 4(),
and 4¢) has a chance to become the ground state. To see this clearly, we bring together the
lowest eigenenergies of different spin configurations in figurey &td 3¢). Among these
curves, the lowest one at a givens that where the ground state occurs. There is a competition
of different spin configurations. The spinterag* 5 BS in equation (17) makes the polarized
state more favourable. As a result, there are complicated spin—spin transitionsiat Tdve
ground state is fully polarizedS = N/2) at sufficiently highB-field. ForN = 5 to 8, the
evolution of the eigenenergies in a magnetic field is presented in figure 4. Presumably, we
have classified the states into three sequences: seqlgrfoethose fulfilling equation (25),
sequencd. p for those fulfilling equation (26), and sequente for the others. Generally, a
state belonging either to sequericg or sequencé. g lies below those belonging to sequence
Lc. ForN = 5 (see figure 4()), sequencé. , and sequenckj are fairly close together, with
the former being slightly lower, and the lowest state occurs only in sequenceor N = 6
to 8, the lowest state occurs firstly in sequetdicewith k¥ = 0, 1 and later in sequendep
withk = 2,3, .... (Note that the state with = N(N — 1)/2 is a crossing of two sequences.)
It will soon be clear in the following that states belonging to the same sequence have similar
nodal structures.
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1.2 T T T T ]

1.1 F .
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Figure 5. The ratio of the interaction energies in the RP and CRP configurations as a function of
N. See equation (27) in the text for the definitiondof

4. Theoretical interpretations

4.1. The geometrical configuration model

In order to reveal the underlying physics of the above numerical data, the task of this section
is to show why the interaction energy is low in some states and high in others. We start from
some general considerations about an interacting few-particle system. In classical mechanics,
a particle can have a definite position, and the interaction energy of a few-particle system can
be minimized by forming certain regular equilibrium configurations. Nof<8) repulsive
particles confined in a circular potential, there are two important regular configurations: one
is that in which all of theN particles form a regulaN-sided polygon (this will be called a
regular polygon or RP for short hereafter); another is that in whick 1 particles form a
regular(N — 1)-sided polygon and th&'th locates at the centre (this will be called a centred
regular polygon or CRP for short). We define the ratio of the interaction energies in these two
configurations by

= U (Qcrp)
U(Qrp)

This quantity is presented in figure 5 fof = 3 to 8. We notice thgg > 1 for N < 5 and

B < 1lfor N > 6. In other words, the RP configuration is more stable than the CRP for

N < 5; while for N > 6 the CRP configuration is more stable. The critical point vgita: 1

lies betweenV = 5 and 6. Hence the energies associated with the RP and CRP are close for

N = 5 and 6. The CRP configuration fof = 3 is a dumb-bell with the third particle at the

centre (a centred dumb-bell or CDB in short). This configuration corresponds to the saddle

point of U (R2) in the multicoordinate space and is structurally quite unstable. For other values

of N, the RP and CRP configurations are two minima of the corresporigic.

In quantum mechanics, a system does not have a rigid geometrical configuration. Instead,
we have a probability distribution given by the wavefunction, and the kinetic energy is
determined by the curvature of the wavefunction. To have a rigid geometrical configuration
is to have a wavefunction of Dirac’s delta, which may be very favourable for minimizing the
interaction energy but gives infinite kinetic energy of the state. In the lowest eigenenergy state,
there is a balance of the two, such that the total energy is minimized. Thus it is natural to
suppose that the lowest state should have its wavefunction smoothly (without nodes) distributed

(27)
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in the vicinity of and peaking at the equilibrium point. Besides the dynamics, the permutation
symmetry plays an important role in identical-particle systems. For non-interacting particle
systems, the symmetry constraints are prescribed by how the particles can fill the single-particle
states. In strongly interacting systems, the concept of single-particle states is no longer valid.
We must consider the symmetry constraints globally. As we will see in the following, the
equilibrium configuration may in some cases be prohibited by symmetries; this does not have
a classical counterpart.

Let us decompose th&/-body wavefunction according to the spin couplings in the
following manner:

Wi = Z DrL;vvy 28121, 225+ o5 2N (5252) 1, (V153)0 - - - (VN —25N) ) (28)

V1 VN-2

where®y;.,,....,_,s1 IS the spatial parti(s1s2),, (v153)., - - - (Vn—25n)s) IS the spin parts; and
s, are coupled to; andvy, andss is coupled tov,, etc. If the particles form a RP, a rotation
of 2 /N about the origin, which produces a phase factor ofiexpL/N) when operating on
the wavefunction, is equivalent to a cyclic permutation of Mgarticles. This leads to the
following equation:

exp[l 27TL/N](D[L;U1~~VN,2S] (Zg_)v 2(2)5 MR Z?]) = CD[L:U]_--MN,zS] (Z(j)\ls Z(]?v Zg’ IR ) Z?\]_]_) (29)

where we have assumed that the particles form a RP and setz{ exp[i 27(j — 1)/N]
without any loss of generality®(r.,,...o,_,5 (2% 235 23, - - -, 2%_;) can be re-expanded in the
following manner:

N2
DpLvyvy o851 (EN, 21522, - IN-1) = Z A{Ei...zg;\;}®[L;vi~»-v;\,72S](Zl,Z2,~~,ZN) (30)

)
VirVn_2

where the expansion coefficients can be obtained analytically with the aid of representation
theory for symmetric group x>and eventually be expressed in terms of the Clebsch—Gordan
coefficients [29]. Combining equations (29) and (30), we obtain a set of homogeneous linear
equations fof (z.u,..vy ,51(z%, 23, 23, - . ., 2% _1)}. Non-vanishing solutions exist only when
[v1-+-vN_28] .

det{A[Vi“'vz,zS] —expli 277L/N]8[1’1"-\11\172],[\)'1-“1)}\,,2]} =0 (31)
WHEIedyy,..oy 1. [vivyy o] = Supvups -+ - Suy oy, Similar equations can be constructed for
{®@[L:v,--vy_,s1} IN the CRP configuration.

Consider the simplest case of fully polarized states=(N/2); there is only one comp-

onent of the wavefunctiotv; = i +1)/2,i =1,..., N — 2), and

A[Vl'”VN—ZS] _ (_1)N—l‘ (32)

[vi-vw—2S] —

Let ¥, (RP) be the value of the spatial wavefunction at the RP configuration in the fully
polarized state. From equations (28)—(32) we observe ¥haRP) # 0 only when
L = Nk+ N(N — 1)/2 (k being an integer). Whed (RP) # O, it is called an RP-
accessible state. Whebh, (RP) = 0, the RP configuration is a node of the wavefunction
and it is called an RP-inaccessible state. Similarly, we hiiyéCRP # 0 only when
L = (N —1k+ N(N — 1)/2 for the polarized states. Hence it is now clear that sequence
L 4 is just composed of states for which the RP configuration is accessible by symmetries;
sequencd. p are states for which the CRP configuration is accessible; and seqlerae
states for which the RP and CRP configurations are both prohibited by symmetries.

For the unpolarized states (< N/2), there is more than one component of the
wavefunction. As an example, we consider the simplest cageé ef 3 for the states with
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S = 1/2. The equilibrium configuration fa¥ = 3 is an equilateral triangle (denoted by ET);
we have

1 1
Altal 4l 1 B
[15] (03] 2 2
(33)
Al031 03] _J3 _1
i1 “od 2 2

Combining equation (31) and equation (33), we obtain that non-vanish[iﬂg_%](ET) and
Q[quy%](ET) occur only whenl # 3k.

For N = 4, the equilibrium configuration is a square (denoted by SQ). Using similar
arguments, we find that the SQ configuration is not prohibited by symmetries only when
L # 4k +2forS =1andL = 2k for S = 0.

On comparing what was obtained here and the numerical results given in figures 1-4, it is
now clear that the lowest possible states are just those for which the equilibrium configuration
is accessible by symmetries, i.e. the lowest states possiblé f9r5 are those for which the
RP configuration is accessible; for = 6, 7, 8 they are the RP- and/or CRP-accessible states.

J ¥
L
L
2

, \
ST RN
LA AR
NN

] N

y. »v‘e.'l'nl,‘,','i.'","',':?\\\\ N

AN

{ A
NN
LY RN

AR
RS

Figure 6. |¥ |2 as a function ofa, 0) for N = 3 andS = 3/2.

To see clearly what happens to the wavefunction when the equilibrium configuration is
accessible or prohibited by symmetries, as an example we present in figure 6 the angular part
of the wavefunction fov = 3 in the state§ = 3/2 as a function of«, 6), which provides us
with all of the information about particle correlations.andé are then defined by

Il
[n2]
0=92—¢1 (35)

(see equation (18) and figure 7). In the 0) plane, the pointg30°, 0), (30°, 180°) and the
line « = 90° correspond ta,3 = 0, z33 = 0, andz;, = 0 respectively; they are nodes

tana = (34)
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Figure 7. Jacobi coordinates for a three-body system.

of any antisymmetric states; poinggé0°, 0), (60°, 180°) and the linew = 0 (i.e.n, = 0)
correspond to the CDB, which is a nodelot= even states, since in a dumb-bell a rotation of
180 is equivalent to an exchange of the two particles at the ends; the centra(4®if®0°)
corresponds to the equilibrium configuration (an ET). In an ET-accessible &tate k),
the distribution of the wavefunction is simply a tower located4®°, 90°), implying that
the ET is the dominant configuration such that the average interaction energy is particularly
low. (45°,90°) is a node of the wavefunction in all ET-inaccessible states. As a result, the
wavefunction can only distribute away fro@5°, 90°) such that it looks like a volcano and
the system does not have a dominant configuration. The interaction energy is not minimized
in this state. The othe¥-particle wavefunctions show similar structures [25, 26].

Since there are two equilibrium configurations fér > 4, there are two sequences of
magic numbers, i.e., sequentg and sequenceé p in the fully polarized states (note that
the CRP is accessible for &l < N/2 states). Foiv = 4, the RP configuration is much
more stable than the CRP, and sequehgeappears only as minor downward cusps (e.g., see
L = 12 infigure 1¢)). Occasionally arl. € sequencd. is adjacent to all’ € sequencé 4
and the minor downward cusp is not seen (ee 9, 15 in figure 1¢)). The existence of two
sequences of magic numbers is more evident Witk 5 and 6, since the CRP configuration
is then more competitive with the RP in energy.

1.00 | \ ~
/ * L=5
A \
~ * L=7
~ 075 ™. E
=
:!: 0/\\0 L=9
5 R
= \\ L=11
'\7‘ 0.50 F /\’:\\. L=13 d
0/ \::i___'ls
4 L=17
0-25|||||lll|lxx|||||||
0 5 10 15 20

A

Figure 8. The average two-particle interaction energy as a function £ |l — 1| for some
givenL.
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4.2. Thet-configuration model

In this subsection, we provide an alternative interpretation for the fully polarized states. We
start by considering the cyclic motion of two electrons in a non-perturbative antisymmetric
state of|/1/2). To see how the electrons can minimize their interaction energy, in figure 8 we
present the average interaction energy as a functian(ef|l, — I |) for some fixed. (=11 +15).

For a prescribed., there are two effective ways for the particles to reduce their interaction
energy. The first is to fill the orbits compactly (i.e. to hake= 1) so that they move at

the smallest relative velocity and meet each other least frequently. In the classical limit (i.e.,

[ > 1), this describes a state of two electrons rotating at the same speed and with a phase
difference ofr, since

1,1+ 1) ~ 25 25(z1 — 22) expl—(|z1|? + |z21%)/ (4a?)] (36)

whose maximum amplitude occurs whan= —z,. The secondisto hawe = L (i.e.,/; =0,
I, = L) so that they can keep their orbits as far apart as possiblé.) describes a state of
two electrons with one undergoing a zero-point oscillation about the origin and the second
rotating around it. As can be seen in figure 8, the first way is more effective than the second.
Hence itis reasonable to expect the compact-filling configuration to be pursued by other small
N-particle systems. However, in a compact cluster, the number of particle pairs that are not
adjacent&£(N — 1)(N — 2)/2) and their differences in angular momentum increase rapidly.
This gradually makes the compact filling unfavourable with increasé dfience for a largey
a configuration with the particles divided into two or more well separated compact sub-clusters
may be superior to one single compact cluster.

After numerically diagonalizing the Hamiltonian, we carefully analysed the wave-
functions and found that each state of sequebhgds dominated by a Slater determinant
of |I,1+1,...,1+N — 1) (which will be called a compact state hereafter [30]) with some
mixings of other Slater determinants having the sdner N > 4, each state of sequentg
is dominated by a Slater determinany@f/ + 1,/ +2,...,/+ N — 1) (which will be called a
quasi-compact state hereafter). In figure 9, we gave some examples to show this. Note that a
single Slater determinant is scarcely an eigenstaté.@f mixing of basis states is inevitable.
A noteworthy feature in figure 9 is that the eigenstate becomes more dominated by a single
Slater basis state with increase 8f Bearing in mind that the CM correlation is a strong
constraint on the motion of smaM-particles but a weak one on that of lartyeparticles [31],
the feature strongly suggests that the mixings are mainly caused by the CM correlation. We
justified this supposition by constructing a trial wavefunction in the following manner:

Wyial = P, 1+1,..., [+ N —1) @37)
forL=NI+N(N —1)/2,0r
Wyia = PO, I1+1,...,[+N —1) (38)

for L = (N — 1)l + N(N — 1)/2, whereP is an operator projecting the state onto the ground
state of H,,. In table 1 we have listed the overlap ¥fiy with the true statel obtained
numerically forN = 3. There is a good agreement betwdgg, andW. The agreement is
approximately at the same level for other valuevofThus we can qualitatively say that the
mixings mainly result from the CM correlation, and that the effect of particle interaction is to
select, among all possibleconfigurations, the most favourable one such that the interaction
energy is minimized.

In the ¢-configuration space, we have a particularly simple picture for the ground-state
transitions of quantum dots in an increasing magnetic field in the infinite-Zeeman-energy limit
(g* - o). For N < 5, the compact filling is the most stable and each possible ground
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Figure 9. Mixing of basis states in the lowest eigenenergy statess defined in equation (14) in
the text. Bases are numbered in decreasing order|8f The bracket indicates theconfiguration
of the dominant basis state.

state is dominated by a compact basis state. The ground-state transition obeys a selection rule
AL = N (see figure 1@() for N = 3). ForN = 6, 7, 8, the compact filling is no longer the

most stable. However, whdhis small (i.e.L < 2(N — 1)+ N(N —1)/2), there is not enough

room for the particles to divide into two well separated clusters; the first two possible ground
states are compact states with= N(N — 1)/2 andN + N(N — 1)/2 respectively. With
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Table 1. Overlaps of the trial three-body wavefunctidgiy from equation (37) withl, calculated
in the following manner:(Wyia |¥) / ((Wyial| Wrial) (¥ |¥) /2. W is the lowest-energy eigenstate
of angular momentunk = /3 + [, + I3 = 3k with S = 3/2, obtained numerically with an inter-
electronic potential of Ar.

L [li,l2,13] Overlaps
3 0121 1

6 [1,2,3] 1
9 [2,3,4] 0.9909971
12 [3,4,5] 0.9715041
15 [4,5,6] 0.9715773
18 [5,6,7] 0.9743785
21 [6,7,8] 0.976 4479
24 [7,8,9] 0.9784010
l N=3 l N=86
10 10
9 9 .
8 8 - -+
v 7 - * -
8 » 8 ———— P
5 - > 5 — e
4 . * > 4 ———
3 L . - q—e * L
2 —e * * 2 —e *
| —e - { —e 7
g—e 0 —&_’—’—
L 3 8 g 12 15 L 156 21 256 30 35
> b
(a) 3 (b)

Figure 10. Intuitive pictures for the ground-state transition in the space of single-particle angular
momentum forN = 3 and 6.

larger L, more single-particle orbits are open; tNeparticle compact cluster splits up into an
(N — 1)-particle compact cluster and a single particle inithe 0 orbit (see figure 1@ for

N = 6). Possible ground states then have angular momertaofN — 1)k + N(N — 1)/2
(k=2,3,4,...). Itis quite tempting to investigate whether further splittings happen for larger
(N, L). Unfortunately this is beyond the scope of our numerical computation.

4.3. The relationship of the two models

In this subsection, we discuss the relationship of the geometrical configuration model and the
£-configuration model by justifying two suppositions: (a) thatfoparticles to compactly fill
the orbits is geometrically to form a RP; (b) that fér— 1 particles to compactly fill the orbits
and theNth to fill the/ = 0 orbit is geometrically to form a CRP.

First of all, we notice that a RP-accessible state (i.e., a state in seqlghtejust one
for which N patrticles can fill the orbits compactly, and a CRP-accessible state (i.e., a state in
sequencd p) is just one for whichV — 1 particles can fill thé > 0 orbits compactly, leaving
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thel = O orbit for theNth particle.
To show that the dominant geometrical configuration of a compact state is a RP, we write
the wavefunction explicitly as

N
1+ 1. I+ N = 1) ~ 23252y [ [ = 2p) expl=(aal® + 2ol + - - + zn [P/ (4aP)].
i>j

(39)

This describes the cyclic motion of particles in a circular band of inner radiy&l + 1)a and

outer radius/(I + N)a. The Pauli exclusion effectively separates the particles from each other
inside the band. Hence, with>> N, equation (39) qualitatively describes the circular motion
of N particles with the same radii and a phase differencengf2 for any pair of adjacent
particles (i.e., a rotating RP). Similarly, with> N, |0,1,1+1,...,] + N — 2) describes a
rotating CRP. The effect of CM correlation further enhances the formation of a RP or a CRP.

W
\\\\\ &

N
‘\\\\\\\\\

RO

R

Figure 11. |Yyiall2, the hyper-angular part dftyiq |2, as a function ofw, 6) for N = 3 in the
compact states.

The introduction of hyperspherical coordinates separates each of equations (37)—(39) into
the product of a radial part and an angular part as before. As an example, in figure 11, we
present the hyper-angular part|dfy, | obtained from equation (37) fav = 3, where even
for the statg0, 1, 2) (i.e., for/ = 0 in equation (37)) the dominant role of the ET configuration
(the RP configuration foN = 3) is evident. In figure 12, the hyper-angular part\of;iq|?
defined in equation (38) is presented, where the dominant configuration is a CDB (the CRP
configuration forN = 3). The geometrical configuration becomes better defined (i.e. the
wavefunction has sharper peaks)ascreases.
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Figure 12. As figure 11, but for the quasi-compact states.

5. Summary

To summarize, in this paper we have presented extensive numerical results for the quantum
spectra and particle correlations of systems of few interacting electrons in a parabolic quantum
dot and a strong magnetic field. Only the low-lying states have been considered. With all
particles in the lowest Landau level, the introduction of hyperspherical coordinates allows the
separation of the interaction energy into the product of a radial part and an angular part; the
former decreases monotonically with increase of angular momentum, while the latter brings
outrich structures. There exist magic angular momenta which give particularly low interaction
energy. ForN > 4 in the fully polarized states, two sequences of magic angular momenta
have been discovered. For the unpolarized states the rules that determine the magic angular
momenta are more trivial and strongly depend 8n S). For the appearance of magic angular
momenta, two theoretical models have been proposed.

In the geometrical model, the basic assumption is that the wavefunction should focus on
some symmetric configurations. This is a general feature of few-particle systems (but may
not apply for a largeV). There are two equilibrium configurations for > 4 (i.e., the RP
and CRP). Particularly low interaction energy is obtained when one of them is accessible by
symmetries, resulting in two sequences of magic angular momenta for the fully polarized
states. FOV < 5, sequencé. , is superior to sequendep since the RP is more stable than
the CRP; forN > 5, the CRP is more stable than the RP and sequepd®comes dominant.

In the ¢-configuration model, we provide an independent-particle picture for the motion
of interacting particles in the lowest Landau level. There are two important configurations in
the ¢-space, i.e. the compact filling and the quasi-compact filling, which effectively reduce
the interaction energy of a few-particle system. Hence particularly low interaction energy is
obtained when the compact or quasi-compact filling is accessible. The compact filling is more
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effective whenV < 5; the quasi-compact filling is superior to the compact filling fot> 6
and sufficiently largd..

Seemingly, the two models are quite different. However, as we have pointed out, they are
equivalent to some extent. There is a similarity to the case of some light even—even nuclei
(e.g., *2C) for which thea-cluster model and the shell model are both very successful in
describing the ground state and some low-lying excited states in nuclear physics [32]. Here
the Pauli correlation plays an important role. It blurs the distinction of the two models. The
¢-configuration model seems to work better than the geometrical one atisfoalV = 6, 7, 8
where the wavefunction does not have sharp peaks. The geometrical configuration model is
on a sounder footing whehis large or the interaction energy is dominant (e.qg., in the Wigner-
crystal regime), since then the wavefunction has a sharper peak (or peaks). As for systems
where the interaction energy is dominant, the true state is a mixture of basis states of many
Landau levels, and thieconfiguration model developed in this paper on the basis of the lowest
Landau level is no longer valid.
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